Waste management means collecting, transporting, processing, recycling and monitoring of the spend. The word waste management generally pertains to those materials which can be made by human activity and it is usually undertaken to lessen the effect of these activities on their health and environment. Waste management is also beneficial to recover useful resources from the waste. Waste management involves all solid, liquid and gaseous or radioactive substances that happen to be managed with different methods and expertise is necessary for each of these. Waste management practices are different for different countries of the world be it developed or developing nations. The management is different for urban and rural areas, for residential and industrial waste producers. Management of residential and institutional waste in cities and metros is performed by the local government authorities or what we call as Municipal Corporation, while management of non-hazardous commercial and professional waste is done by the generator of such waste.
Solid waste Management
Techniques of solid waste management are:
1. Plasma gasification- Plasma is a highly electrically charged or ionized gas. A good example of this in nature is lightning which is with the capacity of producing temperatures more than 12, 600 F or 6, 980 C. A gasifier vessel is the one that utilizes proprietary plasma torches operating at more than 10, 000 F or 5, 540 C which is the surface temperature of the Sun, to be able to order to create a gasification zone as high as 3, 000 F or 1, 650 C which will convert solid or liquid wastes into a sun gas. If the municipal solid waste is put through this extreme heat within the vessel, the molecular bonds of the wastes breakdown into elemental components. The procedure leads to elemental destruction of waste and hazardous materials which were originally present. Plasma gasification offers states new opportunities for waste disposal, and moreover for renewable power generation within an environmentally sustainable manner.
2. Landfill- Losing waste in a landfill involves burying the waste under the bottom which is a common practice in most countries of the world. Landfills tend to be established in abandoned or unused quarries, borrow pits or mining voids. When a landfill is properly designed and well-managed it may become a hygienic and relatively inexpensive method of disposing of waste materials. Landfills which can be older, poorly designed or poorly managed create lots of adverse environmental impacts like attraction of vermin, wind-blown litter, and generation of liquid leach ate. A byproduct of landfills is gas which mostly comprises of carbon dioxide and methane, which is produced as and when organic waste reduces. This gas might kill surface vegetation, create odour problems, and is a greenhouse gas. Waste which is deposited is generally compacted to increase its stability and density, which is always covered to prevent attracting mice or rats. To extract the landfill gas many landfills have gas extraction systems installed. Gas is pumped from the landfill using pipes which have holes and are flared off or burnt in a gas engine to create electricity.
Water Treatment
Water treatment means all those processes which are being used to make water acceptable for a desired end-use. These include use of water for drinking, medical, professional processes and many other uses. The goal of all such water treatment is to eliminate the contaminants present in the water or decrease the concentration of contaminants so the water becomes fit for consumption. One meaning to it is returning water to its natural environment without adversely impacting the ecology. The processes for treating water for drinking purpose can be solids separation by using physical processes such as settling and filtration, and chemical processes such as disinfection and coagulation and Biological processes if required. Generally the process includes:
Pre-chlorination - which is employed for algae control and arresting any biological growth
Aeration - used along with pre-chlorination for removal of dissolved manganese and iron
Coagulation - for flocculation
Coagulant aids - used to improve clotting as well as for thicker flock formation
Sedimentation -done to split up solids i. e. removing suspended solids trapped in the flock
Filtration - it involves removing particles from water
Desalination - it is the Process of removing salt from the water
Disinfection - for killing bacteria in this.
There is no fixed formula for water treatment. Everything depends on the quality and degree of impurity. Sewage treatment is the procedure of removing a lot of the contamination from sewage or wastewater and producing a liquid effluent which is suited to disposal to the surroundings. Sewage must be conveyed and used in cure plant by appropriate pipes and infrastructure and the procedure must be properly regulated and controlled.
E-waste management
"Electronic waste" is defined as all the secondary computers, entertainment devices, mobile phones, all other stuff like television, refrigerators, whether they can be purchased or donated or discarded by their original owners or users. In simple conditions those items mentioned above which are either dumped or disposed or discarded by their buyers rather than recycling and reusing them is named E-Waste. A major portion of this waste is made through products like computers, laptops etc. According to recent estimates about 50 million tons of E-waste is produced every year around the world. THE UNITED STATES alone discards 30 million computers each year and nearly 100 million phones are discarded in Europe each year. The reason why for these huge figures are that there are the rapid changes in technology, low cost of the merchandise initially which encourages people to buy new instead of restoring and reusing and also the price tag on modifying the features is a lot more than the initial cost. Moreover the electronic goods today are created in such a way that they follow something called as planned obsolescence which means they get obsolete with the passage of time. Electronic waste processing first involves dismantling the equipment or the electronic item into various parts i. e. metal frames, circuit boards, power supplies, plastics etc. and this is often done manually. The good thing about this process is that human's have the ability to recognize and save those parts which are working and are repairable which includes chips, RAM, transistors etc. The disadvantage of this process is usually that the labour might often be costly in those countries that have high health insurance and safety standards. An alternative to this is called bulk system; wherein a hopper conveys material designed for shredding into a very sophisticated mechanical separator which includes screening and grinding machines to separate the constituents of metal and plastic fractions. These plastic fractions are then sold to plastics recyclers or smelters. Emissions are caught by the scrubbers and screens. To separate glass, plastic, harmful and unharmful metals; magnets and eddy currents are widely-used. Copper, gold silver, tin etc. valuable metals can be purchased to smelters for recycling purpose. Hazardous smoke and gases are captured, and then treated to remove environmentally friendly threat. A perfect electronic waste recycling plant is the one that combines dismantling for recovery of its components with increased cost-effectiveness of processing of bulk electronic waste. Reuse is an alternative option to recycling because it extends the life span of these devices.
Recycling
"Reduce, Reuse, Recycle" are known as the 3R of the waste hierarchy. Recycling involves processing used materials to make a new product which prevents waste of potentially useful materials that will certainly reduce the consumption of fresh raw materials and reduce the energy usage, water pollution and reduce air pollution by reducing the necessity for "conventional" waste disposal, and lower the greenhouse gas emissions when compared with original and fresh production. Recycling is an essential component of modern waste reduction and it is the third element of Recyclable materials include many types of glass, paper, metal, plastic, textiles, and electronics. Although similar in place, the composting or other reuse of biodegradable waste - such as food or garden waste - is not typically considered recycling. Materials to be recycled are either taken to a collection center or picked up from the curbside, then sorted, cleaned, and reprocessed into new materials bound for manufacturing. Recycling Saves money, energy, trees the earth Earth. Recycling of an material will produce a fresh way to obtain the same material like for instance used office paper can be converted into new office paper. This is often difficult and expensive so "recycling" of many products involves their reuse in producing different materials. Another form of recycling is the salvage of certain materials from complex products because of their intrinsic value like lead from car batteries or gold from computer components, or due to their hazardous nature. The expenses and energy used in collection and transportation outweigh the expenses and energy saved in the production process which really is a disadvantage of recycling and also that the jobs produced by the recycling industry can be of poor trade. Also materials like paper pulp are such which can only be recycled a few times before degradation prevents further recycling.
Recent developments: As reported in the Financial Express on 20th July 2010, Jamshedpur Utilities & Services Company (Jusco), which really is a fully owned subsidiary of Tata Steel, recently bagged the Municipal Solid Waste management contract for Mysore city from the Mysore City Corporation and Municipal Solid Waste (MSW) management contract under the Kolkata metropolitan area for six municipalities. Under the project Jusco will construct 5'transfer stations' and 6 'compost plants' in the municipalities of Champdani, Baidyabati, Serampore, Rishra, Konnagar and Uttarapara-Kotrung which are categorized as Kolkata Metropolitan Development Authority (KMDA). The Rs 39 crore projects will be funded by Japan International Cooperation Agency (JICA). Jusco offers integrated solutions to municipal waste management which comprises of waste transfer, transfer station management, composting, engineered structured landfills, integrated waste recycling and reclamation, recycling of municipal and specialized wastes, etc. The utilities major also bagged the 'TPM Excellence Award -2008' instituted by the Japan Institute of Plant Maintenance (JIPM) and has other national and international awards like National Urban Water Awards (NUWA) in the "citizen services & governance category" for 2009.